Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
min(nil) → 0
min(add(n, x)) → minIter(add(n, x), add(n, x), 0)
minIter(nil, add(n, y), m) → minIter(add(n, y), add(n, y), s(m))
minIter(add(n, x), y, m) → if_min(le(n, m), x, y, m)
if_min(true, x, y, m) → m
if_min(false, x, y, m) → minIter(x, y, m)
head(add(n, x)) → n
tail(add(n, x)) → x
tail(nil) → nil
null(nil) → true
null(add(n, x)) → false
rm(n, nil) → nil
rm(n, add(m, x)) → if_rm(eq(n, m), n, add(m, x))
if_rm(true, n, add(m, x)) → rm(n, x)
if_rm(false, n, add(m, x)) → add(m, rm(n, x))
minsort(nil, nil) → nil
minsort(add(n, x), y) → if_minsort(eq(n, min(add(n, x))), add(n, x), y)
if_minsort(true, add(n, x), y) → add(n, minsort(app(rm(n, x), y), nil))
if_minsort(false, add(n, x), y) → minsort(x, add(n, y))

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
min(nil) → 0
min(add(n, x)) → minIter(add(n, x), add(n, x), 0)
minIter(nil, add(n, y), m) → minIter(add(n, y), add(n, y), s(m))
minIter(add(n, x), y, m) → if_min(le(n, m), x, y, m)
if_min(true, x, y, m) → m
if_min(false, x, y, m) → minIter(x, y, m)
head(add(n, x)) → n
tail(add(n, x)) → x
tail(nil) → nil
null(nil) → true
null(add(n, x)) → false
rm(n, nil) → nil
rm(n, add(m, x)) → if_rm(eq(n, m), n, add(m, x))
if_rm(true, n, add(m, x)) → rm(n, x)
if_rm(false, n, add(m, x)) → add(m, rm(n, x))
minsort(nil, nil) → nil
minsort(add(n, x), y) → if_minsort(eq(n, min(add(n, x))), add(n, x), y)
if_minsort(true, add(n, x), y) → add(n, minsort(app(rm(n, x), y), nil))
if_minsort(false, add(n, x), y) → minsort(x, add(n, y))

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

IF_MINSORT(true, add(n, x), y) → RM(n, x)
MINITER(add(n, x), y, m) → IF_MIN(le(n, m), x, y, m)
RM(n, add(m, x)) → IF_RM(eq(n, m), n, add(m, x))
MIN(add(n, x)) → MINITER(add(n, x), add(n, x), 0)
IF_MIN(false, x, y, m) → MINITER(x, y, m)
IF_RM(false, n, add(m, x)) → RM(n, x)
MINSORT(add(n, x), y) → IF_MINSORT(eq(n, min(add(n, x))), add(n, x), y)
MINITER(add(n, x), y, m) → LE(n, m)
IF_MINSORT(false, add(n, x), y) → MINSORT(x, add(n, y))
IF_MINSORT(true, add(n, x), y) → APP(rm(n, x), y)
LE(s(x), s(y)) → LE(x, y)
IF_MINSORT(true, add(n, x), y) → MINSORT(app(rm(n, x), y), nil)
MINSORT(add(n, x), y) → EQ(n, min(add(n, x)))
APP(add(n, x), y) → APP(x, y)
MINSORT(add(n, x), y) → MIN(add(n, x))
MINITER(nil, add(n, y), m) → MINITER(add(n, y), add(n, y), s(m))
EQ(s(x), s(y)) → EQ(x, y)
IF_RM(true, n, add(m, x)) → RM(n, x)
RM(n, add(m, x)) → EQ(n, m)

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
min(nil) → 0
min(add(n, x)) → minIter(add(n, x), add(n, x), 0)
minIter(nil, add(n, y), m) → minIter(add(n, y), add(n, y), s(m))
minIter(add(n, x), y, m) → if_min(le(n, m), x, y, m)
if_min(true, x, y, m) → m
if_min(false, x, y, m) → minIter(x, y, m)
head(add(n, x)) → n
tail(add(n, x)) → x
tail(nil) → nil
null(nil) → true
null(add(n, x)) → false
rm(n, nil) → nil
rm(n, add(m, x)) → if_rm(eq(n, m), n, add(m, x))
if_rm(true, n, add(m, x)) → rm(n, x)
if_rm(false, n, add(m, x)) → add(m, rm(n, x))
minsort(nil, nil) → nil
minsort(add(n, x), y) → if_minsort(eq(n, min(add(n, x))), add(n, x), y)
if_minsort(true, add(n, x), y) → add(n, minsort(app(rm(n, x), y), nil))
if_minsort(false, add(n, x), y) → minsort(x, add(n, y))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

IF_MINSORT(true, add(n, x), y) → RM(n, x)
MINITER(add(n, x), y, m) → IF_MIN(le(n, m), x, y, m)
RM(n, add(m, x)) → IF_RM(eq(n, m), n, add(m, x))
MIN(add(n, x)) → MINITER(add(n, x), add(n, x), 0)
IF_MIN(false, x, y, m) → MINITER(x, y, m)
IF_RM(false, n, add(m, x)) → RM(n, x)
MINSORT(add(n, x), y) → IF_MINSORT(eq(n, min(add(n, x))), add(n, x), y)
MINITER(add(n, x), y, m) → LE(n, m)
IF_MINSORT(false, add(n, x), y) → MINSORT(x, add(n, y))
IF_MINSORT(true, add(n, x), y) → APP(rm(n, x), y)
LE(s(x), s(y)) → LE(x, y)
IF_MINSORT(true, add(n, x), y) → MINSORT(app(rm(n, x), y), nil)
MINSORT(add(n, x), y) → EQ(n, min(add(n, x)))
APP(add(n, x), y) → APP(x, y)
MINSORT(add(n, x), y) → MIN(add(n, x))
MINITER(nil, add(n, y), m) → MINITER(add(n, y), add(n, y), s(m))
EQ(s(x), s(y)) → EQ(x, y)
IF_RM(true, n, add(m, x)) → RM(n, x)
RM(n, add(m, x)) → EQ(n, m)

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
min(nil) → 0
min(add(n, x)) → minIter(add(n, x), add(n, x), 0)
minIter(nil, add(n, y), m) → minIter(add(n, y), add(n, y), s(m))
minIter(add(n, x), y, m) → if_min(le(n, m), x, y, m)
if_min(true, x, y, m) → m
if_min(false, x, y, m) → minIter(x, y, m)
head(add(n, x)) → n
tail(add(n, x)) → x
tail(nil) → nil
null(nil) → true
null(add(n, x)) → false
rm(n, nil) → nil
rm(n, add(m, x)) → if_rm(eq(n, m), n, add(m, x))
if_rm(true, n, add(m, x)) → rm(n, x)
if_rm(false, n, add(m, x)) → add(m, rm(n, x))
minsort(nil, nil) → nil
minsort(add(n, x), y) → if_minsort(eq(n, min(add(n, x))), add(n, x), y)
if_minsort(true, add(n, x), y) → add(n, minsort(app(rm(n, x), y), nil))
if_minsort(false, add(n, x), y) → minsort(x, add(n, y))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 6 SCCs with 7 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

APP(add(n, x), y) → APP(x, y)

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
min(nil) → 0
min(add(n, x)) → minIter(add(n, x), add(n, x), 0)
minIter(nil, add(n, y), m) → minIter(add(n, y), add(n, y), s(m))
minIter(add(n, x), y, m) → if_min(le(n, m), x, y, m)
if_min(true, x, y, m) → m
if_min(false, x, y, m) → minIter(x, y, m)
head(add(n, x)) → n
tail(add(n, x)) → x
tail(nil) → nil
null(nil) → true
null(add(n, x)) → false
rm(n, nil) → nil
rm(n, add(m, x)) → if_rm(eq(n, m), n, add(m, x))
if_rm(true, n, add(m, x)) → rm(n, x)
if_rm(false, n, add(m, x)) → add(m, rm(n, x))
minsort(nil, nil) → nil
minsort(add(n, x), y) → if_minsort(eq(n, min(add(n, x))), add(n, x), y)
if_minsort(true, add(n, x), y) → add(n, minsort(app(rm(n, x), y), nil))
if_minsort(false, add(n, x), y) → minsort(x, add(n, y))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


APP(add(n, x), y) → APP(x, y)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(APP(x1, x2)) = (2)x_1   
POL(add(x1, x2)) = 1/4 + (7/2)x_2   
The value of delta used in the strict ordering is 1/2.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
min(nil) → 0
min(add(n, x)) → minIter(add(n, x), add(n, x), 0)
minIter(nil, add(n, y), m) → minIter(add(n, y), add(n, y), s(m))
minIter(add(n, x), y, m) → if_min(le(n, m), x, y, m)
if_min(true, x, y, m) → m
if_min(false, x, y, m) → minIter(x, y, m)
head(add(n, x)) → n
tail(add(n, x)) → x
tail(nil) → nil
null(nil) → true
null(add(n, x)) → false
rm(n, nil) → nil
rm(n, add(m, x)) → if_rm(eq(n, m), n, add(m, x))
if_rm(true, n, add(m, x)) → rm(n, x)
if_rm(false, n, add(m, x)) → add(m, rm(n, x))
minsort(nil, nil) → nil
minsort(add(n, x), y) → if_minsort(eq(n, min(add(n, x))), add(n, x), y)
if_minsort(true, add(n, x), y) → add(n, minsort(app(rm(n, x), y), nil))
if_minsort(false, add(n, x), y) → minsort(x, add(n, y))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

LE(s(x), s(y)) → LE(x, y)

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
min(nil) → 0
min(add(n, x)) → minIter(add(n, x), add(n, x), 0)
minIter(nil, add(n, y), m) → minIter(add(n, y), add(n, y), s(m))
minIter(add(n, x), y, m) → if_min(le(n, m), x, y, m)
if_min(true, x, y, m) → m
if_min(false, x, y, m) → minIter(x, y, m)
head(add(n, x)) → n
tail(add(n, x)) → x
tail(nil) → nil
null(nil) → true
null(add(n, x)) → false
rm(n, nil) → nil
rm(n, add(m, x)) → if_rm(eq(n, m), n, add(m, x))
if_rm(true, n, add(m, x)) → rm(n, x)
if_rm(false, n, add(m, x)) → add(m, rm(n, x))
minsort(nil, nil) → nil
minsort(add(n, x), y) → if_minsort(eq(n, min(add(n, x))), add(n, x), y)
if_minsort(true, add(n, x), y) → add(n, minsort(app(rm(n, x), y), nil))
if_minsort(false, add(n, x), y) → minsort(x, add(n, y))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


LE(s(x), s(y)) → LE(x, y)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(s(x1)) = 1/2 + (13/4)x_1   
POL(LE(x1, x2)) = (15/4)x_2   
The value of delta used in the strict ordering is 15/8.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
min(nil) → 0
min(add(n, x)) → minIter(add(n, x), add(n, x), 0)
minIter(nil, add(n, y), m) → minIter(add(n, y), add(n, y), s(m))
minIter(add(n, x), y, m) → if_min(le(n, m), x, y, m)
if_min(true, x, y, m) → m
if_min(false, x, y, m) → minIter(x, y, m)
head(add(n, x)) → n
tail(add(n, x)) → x
tail(nil) → nil
null(nil) → true
null(add(n, x)) → false
rm(n, nil) → nil
rm(n, add(m, x)) → if_rm(eq(n, m), n, add(m, x))
if_rm(true, n, add(m, x)) → rm(n, x)
if_rm(false, n, add(m, x)) → add(m, rm(n, x))
minsort(nil, nil) → nil
minsort(add(n, x), y) → if_minsort(eq(n, min(add(n, x))), add(n, x), y)
if_minsort(true, add(n, x), y) → add(n, minsort(app(rm(n, x), y), nil))
if_minsort(false, add(n, x), y) → minsort(x, add(n, y))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MINITER(add(n, x), y, m) → IF_MIN(le(n, m), x, y, m)
MINITER(nil, add(n, y), m) → MINITER(add(n, y), add(n, y), s(m))
IF_MIN(false, x, y, m) → MINITER(x, y, m)

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
min(nil) → 0
min(add(n, x)) → minIter(add(n, x), add(n, x), 0)
minIter(nil, add(n, y), m) → minIter(add(n, y), add(n, y), s(m))
minIter(add(n, x), y, m) → if_min(le(n, m), x, y, m)
if_min(true, x, y, m) → m
if_min(false, x, y, m) → minIter(x, y, m)
head(add(n, x)) → n
tail(add(n, x)) → x
tail(nil) → nil
null(nil) → true
null(add(n, x)) → false
rm(n, nil) → nil
rm(n, add(m, x)) → if_rm(eq(n, m), n, add(m, x))
if_rm(true, n, add(m, x)) → rm(n, x)
if_rm(false, n, add(m, x)) → add(m, rm(n, x))
minsort(nil, nil) → nil
minsort(add(n, x), y) → if_minsort(eq(n, min(add(n, x))), add(n, x), y)
if_minsort(true, add(n, x), y) → add(n, minsort(app(rm(n, x), y), nil))
if_minsort(false, add(n, x), y) → minsort(x, add(n, y))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

EQ(s(x), s(y)) → EQ(x, y)

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
min(nil) → 0
min(add(n, x)) → minIter(add(n, x), add(n, x), 0)
minIter(nil, add(n, y), m) → minIter(add(n, y), add(n, y), s(m))
minIter(add(n, x), y, m) → if_min(le(n, m), x, y, m)
if_min(true, x, y, m) → m
if_min(false, x, y, m) → minIter(x, y, m)
head(add(n, x)) → n
tail(add(n, x)) → x
tail(nil) → nil
null(nil) → true
null(add(n, x)) → false
rm(n, nil) → nil
rm(n, add(m, x)) → if_rm(eq(n, m), n, add(m, x))
if_rm(true, n, add(m, x)) → rm(n, x)
if_rm(false, n, add(m, x)) → add(m, rm(n, x))
minsort(nil, nil) → nil
minsort(add(n, x), y) → if_minsort(eq(n, min(add(n, x))), add(n, x), y)
if_minsort(true, add(n, x), y) → add(n, minsort(app(rm(n, x), y), nil))
if_minsort(false, add(n, x), y) → minsort(x, add(n, y))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


EQ(s(x), s(y)) → EQ(x, y)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(EQ(x1, x2)) = x_1 + (13/4)x_2   
POL(s(x1)) = 5/4 + (15/4)x_1   
The value of delta used in the strict ordering is 85/16.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
min(nil) → 0
min(add(n, x)) → minIter(add(n, x), add(n, x), 0)
minIter(nil, add(n, y), m) → minIter(add(n, y), add(n, y), s(m))
minIter(add(n, x), y, m) → if_min(le(n, m), x, y, m)
if_min(true, x, y, m) → m
if_min(false, x, y, m) → minIter(x, y, m)
head(add(n, x)) → n
tail(add(n, x)) → x
tail(nil) → nil
null(nil) → true
null(add(n, x)) → false
rm(n, nil) → nil
rm(n, add(m, x)) → if_rm(eq(n, m), n, add(m, x))
if_rm(true, n, add(m, x)) → rm(n, x)
if_rm(false, n, add(m, x)) → add(m, rm(n, x))
minsort(nil, nil) → nil
minsort(add(n, x), y) → if_minsort(eq(n, min(add(n, x))), add(n, x), y)
if_minsort(true, add(n, x), y) → add(n, minsort(app(rm(n, x), y), nil))
if_minsort(false, add(n, x), y) → minsort(x, add(n, y))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

RM(n, add(m, x)) → IF_RM(eq(n, m), n, add(m, x))
IF_RM(true, n, add(m, x)) → RM(n, x)
IF_RM(false, n, add(m, x)) → RM(n, x)

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
min(nil) → 0
min(add(n, x)) → minIter(add(n, x), add(n, x), 0)
minIter(nil, add(n, y), m) → minIter(add(n, y), add(n, y), s(m))
minIter(add(n, x), y, m) → if_min(le(n, m), x, y, m)
if_min(true, x, y, m) → m
if_min(false, x, y, m) → minIter(x, y, m)
head(add(n, x)) → n
tail(add(n, x)) → x
tail(nil) → nil
null(nil) → true
null(add(n, x)) → false
rm(n, nil) → nil
rm(n, add(m, x)) → if_rm(eq(n, m), n, add(m, x))
if_rm(true, n, add(m, x)) → rm(n, x)
if_rm(false, n, add(m, x)) → add(m, rm(n, x))
minsort(nil, nil) → nil
minsort(add(n, x), y) → if_minsort(eq(n, min(add(n, x))), add(n, x), y)
if_minsort(true, add(n, x), y) → add(n, minsort(app(rm(n, x), y), nil))
if_minsort(false, add(n, x), y) → minsort(x, add(n, y))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


RM(n, add(m, x)) → IF_RM(eq(n, m), n, add(m, x))
IF_RM(true, n, add(m, x)) → RM(n, x)
IF_RM(false, n, add(m, x)) → RM(n, x)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(RM(x1, x2)) = 15/4 + (11/4)x_2   
POL(add(x1, x2)) = 1/4 + (15/4)x_1 + (4)x_2   
POL(eq(x1, x2)) = 2 + (4)x_1 + (9/4)x_2   
POL(IF_RM(x1, x2, x3)) = 7/2 + (2)x_3   
POL(true) = 15/4   
POL(false) = 11/4   
POL(s(x1)) = 7/4 + (2)x_1   
POL(0) = 3   
The value of delta used in the strict ordering is 1/4.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
min(nil) → 0
min(add(n, x)) → minIter(add(n, x), add(n, x), 0)
minIter(nil, add(n, y), m) → minIter(add(n, y), add(n, y), s(m))
minIter(add(n, x), y, m) → if_min(le(n, m), x, y, m)
if_min(true, x, y, m) → m
if_min(false, x, y, m) → minIter(x, y, m)
head(add(n, x)) → n
tail(add(n, x)) → x
tail(nil) → nil
null(nil) → true
null(add(n, x)) → false
rm(n, nil) → nil
rm(n, add(m, x)) → if_rm(eq(n, m), n, add(m, x))
if_rm(true, n, add(m, x)) → rm(n, x)
if_rm(false, n, add(m, x)) → add(m, rm(n, x))
minsort(nil, nil) → nil
minsort(add(n, x), y) → if_minsort(eq(n, min(add(n, x))), add(n, x), y)
if_minsort(true, add(n, x), y) → add(n, minsort(app(rm(n, x), y), nil))
if_minsort(false, add(n, x), y) → minsort(x, add(n, y))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

IF_MINSORT(true, add(n, x), y) → MINSORT(app(rm(n, x), y), nil)
MINSORT(add(n, x), y) → IF_MINSORT(eq(n, min(add(n, x))), add(n, x), y)
IF_MINSORT(false, add(n, x), y) → MINSORT(x, add(n, y))

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
min(nil) → 0
min(add(n, x)) → minIter(add(n, x), add(n, x), 0)
minIter(nil, add(n, y), m) → minIter(add(n, y), add(n, y), s(m))
minIter(add(n, x), y, m) → if_min(le(n, m), x, y, m)
if_min(true, x, y, m) → m
if_min(false, x, y, m) → minIter(x, y, m)
head(add(n, x)) → n
tail(add(n, x)) → x
tail(nil) → nil
null(nil) → true
null(add(n, x)) → false
rm(n, nil) → nil
rm(n, add(m, x)) → if_rm(eq(n, m), n, add(m, x))
if_rm(true, n, add(m, x)) → rm(n, x)
if_rm(false, n, add(m, x)) → add(m, rm(n, x))
minsort(nil, nil) → nil
minsort(add(n, x), y) → if_minsort(eq(n, min(add(n, x))), add(n, x), y)
if_minsort(true, add(n, x), y) → add(n, minsort(app(rm(n, x), y), nil))
if_minsort(false, add(n, x), y) → minsort(x, add(n, y))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


IF_MINSORT(true, add(n, x), y) → MINSORT(app(rm(n, x), y), nil)
The remaining pairs can at least be oriented weakly.

MINSORT(add(n, x), y) → IF_MINSORT(eq(n, min(add(n, x))), add(n, x), y)
IF_MINSORT(false, add(n, x), y) → MINSORT(x, add(n, y))
Used ordering: Polynomial interpretation [25,35]:

POL(eq(x1, x2)) = 0   
POL(MINSORT(x1, x2)) = 1/4 + (4)x_1 + (4)x_2   
POL(le(x1, x2)) = 11/4 + (4)x_1 + (4)x_2   
POL(true) = 0   
POL(rm(x1, x2)) = x_2   
POL(if_rm(x1, x2, x3)) = x_3   
POL(0) = 1/4   
POL(IF_MINSORT(x1, x2, x3)) = 1/4 + (4)x_2 + (4)x_3   
POL(add(x1, x2)) = 4 + x_2   
POL(false) = 1   
POL(if_min(x1, x2, x3, x4)) = 3 + (1/4)x_1 + (7/2)x_2 + (2)x_3   
POL(s(x1)) = 0   
POL(app(x1, x2)) = x_1 + x_2   
POL(min(x1)) = 0   
POL(minIter(x1, x2, x3)) = 1/4 + (7/4)x_1 + (4)x_2   
POL(nil) = 0   
The value of delta used in the strict ordering is 16.
The following usable rules [17] were oriented:

if_rm(false, n, add(m, x)) → add(m, rm(n, x))
rm(n, nil) → nil
if_rm(true, n, add(m, x)) → rm(n, x)
rm(n, add(m, x)) → if_rm(eq(n, m), n, add(m, x))
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

MINSORT(add(n, x), y) → IF_MINSORT(eq(n, min(add(n, x))), add(n, x), y)
IF_MINSORT(false, add(n, x), y) → MINSORT(x, add(n, y))

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
min(nil) → 0
min(add(n, x)) → minIter(add(n, x), add(n, x), 0)
minIter(nil, add(n, y), m) → minIter(add(n, y), add(n, y), s(m))
minIter(add(n, x), y, m) → if_min(le(n, m), x, y, m)
if_min(true, x, y, m) → m
if_min(false, x, y, m) → minIter(x, y, m)
head(add(n, x)) → n
tail(add(n, x)) → x
tail(nil) → nil
null(nil) → true
null(add(n, x)) → false
rm(n, nil) → nil
rm(n, add(m, x)) → if_rm(eq(n, m), n, add(m, x))
if_rm(true, n, add(m, x)) → rm(n, x)
if_rm(false, n, add(m, x)) → add(m, rm(n, x))
minsort(nil, nil) → nil
minsort(add(n, x), y) → if_minsort(eq(n, min(add(n, x))), add(n, x), y)
if_minsort(true, add(n, x), y) → add(n, minsort(app(rm(n, x), y), nil))
if_minsort(false, add(n, x), y) → minsort(x, add(n, y))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


MINSORT(add(n, x), y) → IF_MINSORT(eq(n, min(add(n, x))), add(n, x), y)
IF_MINSORT(false, add(n, x), y) → MINSORT(x, add(n, y))
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(eq(x1, x2)) = (1/4)x_1   
POL(MINSORT(x1, x2)) = 1 + (1/2)x_1   
POL(le(x1, x2)) = 15/4 + (4)x_2   
POL(true) = 1/4   
POL(0) = 1   
POL(IF_MINSORT(x1, x2, x3)) = 3/4 + (4)x_1 + (1/4)x_2   
POL(add(x1, x2)) = 1/4 + (4)x_1 + (4)x_2   
POL(false) = 1/4   
POL(if_min(x1, x2, x3, x4)) = 4 + (13/4)x_2 + (5/4)x_3 + (2)x_4   
POL(s(x1)) = 1 + (4)x_1   
POL(min(x1)) = 5/2 + (4)x_1   
POL(minIter(x1, x2, x3)) = 3 + (1/2)x_1 + (1/4)x_2 + (4)x_3   
POL(nil) = 0   
The value of delta used in the strict ordering is 5/16.
The following usable rules [17] were oriented:

eq(0, s(x)) → false
eq(0, 0) → true
eq(s(x), s(y)) → eq(x, y)
eq(s(x), 0) → false



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ PisEmptyProof

Q DP problem:
P is empty.
The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
min(nil) → 0
min(add(n, x)) → minIter(add(n, x), add(n, x), 0)
minIter(nil, add(n, y), m) → minIter(add(n, y), add(n, y), s(m))
minIter(add(n, x), y, m) → if_min(le(n, m), x, y, m)
if_min(true, x, y, m) → m
if_min(false, x, y, m) → minIter(x, y, m)
head(add(n, x)) → n
tail(add(n, x)) → x
tail(nil) → nil
null(nil) → true
null(add(n, x)) → false
rm(n, nil) → nil
rm(n, add(m, x)) → if_rm(eq(n, m), n, add(m, x))
if_rm(true, n, add(m, x)) → rm(n, x)
if_rm(false, n, add(m, x)) → add(m, rm(n, x))
minsort(nil, nil) → nil
minsort(add(n, x), y) → if_minsort(eq(n, min(add(n, x))), add(n, x), y)
if_minsort(true, add(n, x), y) → add(n, minsort(app(rm(n, x), y), nil))
if_minsort(false, add(n, x), y) → minsort(x, add(n, y))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.